Bipancyclic Subgraphs in Random Bipartite Graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipancyclic subgraphs in random bipartite graphs

A bipartite graph on 2n vertices is bipancyclic if it contains cycles of all even lengths from 4 to 2n. In this paper we prove that the random bipartite graph G(n, n, p) with p(n) À n−2/3 asymptotically almost surely has the following resilience property: Every Hamiltonian subgraph G′ of G(n, n, p) with more than (1/2 + o(1))n2p edges is bipancyclic. This result is tight in two ways. First, the...

متن کامل

Dominating Bipartite Subgraphs in Graphs

A graph G is hereditarily dominated by a class D of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to D. In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.

متن کامل

Efficient Enumeration of Bipartite Subgraphs in Graphs

Subgraph enumeration problems ask to output all subgraphs of an input graph that belongs to the specified graph class or satisfy the given constraint. These problems have been widely studied in theoretical computer science. As far, many efficient enumeration algorithms for the fundamental substructures such as spanning trees, cycles, and paths, have been developed. This paper addresses the enum...

متن کامل

optimal orientations of subgraphs of complete bipartite graphs

for a graph g, let d(g) be the set of all strong orientations of g. the orientationnumber of g is min {d(d) |d belongs to d(g)}, where d(d) denotes the diameterof the digraph d. in this paper, we determine the orientation number for some subgraphs of complete bipartite graphs.

متن کامل

Bipartite subgraphs of integer weighted graphs

For every integer p > 0 let f(p) be the minimum possible value of the maximum weight of a cut in an integer weighted graph with total weight p. It is shown that for every large n and every m < n, f( ( n 2 ) + m) = b 2 4 c + min(d n 2 e, f(m)). This supplies the precise value of f(p) for many values of p including, e.g, all p = ( n 2 ) + ( m 2 ) when n is large enough and m 2 4 ≤ n 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Open Problems in Computer Science and Mathematics

سال: 2013

ISSN: 1998-6262

DOI: 10.12816/0006180